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Abstract
Quality and market acceptance of software products is strongly influenced by respon-
siveness to customer requests. Once a customer request is received, a decision must be
made whether to escalate it to the development team. Once escalated, the ticket must be
formulated as a development task and assigned to a developer. To make the process more
efficient and reduce the time between receiving and escalating the customer request, we
aim to automate the complete customer request management process. We propose a
holistic method called ESSMArT. The method performs text summarization, predicts
ticket escalation, creates the ticket’s title and content, and ultimately assigns the ticket to
an available developer. We began evaluating the method through an internal assessment
of 4114 customer tickets from Brightsquid’s secure health care communication platform -
Secure-Mail. Next, we conducted an external evaluation of the usefulness of the ap-
proach and concluded that: i) supervised learning based on context specific data performs
best for extractive summarization; ii) Random Forest trained on a combination of
conversation and extractive summarization works best for predicting escalation of
tickets, with the highest precision (of 0.9) and recall (of 0.55). Through external
evaluation, we furthermore found that ESSMArT provides suggestions that are 71%
aligned with human ones. Applying the prototype implementation to 315 customer
requests resulted in an average time reduction of 9.2 min per request. ESSMArT helps
to make ticket management faster and with reduced effort for human experts. We
conclude that ESSMArT not only expedites ticket management, but furthermore reduces
human effort. ESSMArT can help Brightsquid to (i) minimize the impact of staff
turnover and (ii) shorten the cycle from an issue being reported to a developer being
assigned to fix it.
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1 Introduction

Software evolution is driven by customers’ (also known as the end users) needs, typically in
the form of feature or maintenance requests. Management of change requests is time consum-
ing and requires significant training and domain experience. Data-driven automation of this
process is proposed to increase responsiveness and improve the quality of this data-driven
requirements, and change management process (Maalej et al. 2016).

Automated text summarization is the task of producing a concise and fluent summary while
preserving key information, content, and overall meaning (Allahyari et al. 2017). A recent
survey on the different concepts and techniques was given by Gambhir and Gupta (2017).
While initially developed and used outside software engineering, text summarization becomes
critical for handling the textual information that is now widely accessible in software devel-
opment. Automated summarization of bug reports has been studied e.g. by Rastkar et al.
(2014). However, summarization is just the first step in a more comprehensive process of
leveraging textual responses for software product improvement. To increase its practical
impact, we increase the scope of automation and propose ESSMArT as a method for
automating text summarization, escalation of customer requests to the development team, as
well as suggesting assignment and priority of the automated ticket report.

In this paper, we target the automated escalation, creation, prioritization, and job assignment
of customer requests. To do so, we introduce a method called ESSMArT.1

ESSMArT combines summarization with information retrieval techniques for automated
generation of escalated tickets based on customer requests. As a case study, we evaluated
ESSMArT using data from the development of a Health Communication system offered by a
company called Brightsquid. Analyzing customer change requests is an important part of their
development process (Nayebi et al. 2018). Through analysis of 4,114 customer requests, we
answered the following research questions:

RQ1: Automated Condensing of Customer Requests Among existing state-of- the art
techniques for condensing customer requests by extractive summarization, which one works
best in terms of F1 accuracy?

Why and How: Typically, once a change request arrives, a Customer Relationship
Management (CRM) employee takes over the request and summarizes the request for the
customer’s confirmation. The summary generated is the base for the escalation decision
and possibly for creating a development ticket. Automation of this step is intended to
reduce the human workload and increase responsiveness using the state of the art
ROUGE metric for evaluation.

RQ2: Predicting Escalation of Customer Requests Comparing three classification algorithms
- Naive Bayes, Support Vector Machines, and Random Forest -, which one works best for
predicting the escalation of customer requests?

Why and How: Support for Customer Relationship Management (CRM) staff in predicting
escalation is expected to help in terms of (i) effort needed and (ii) quality of prediction. We
evaluated quality of prediction by comparing algorithm results with those of three machine
learners with proven success in similar contexts.

1 ESSMArT: EScalation and SuMmarization AuTomation
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RQ3: Quality of Automatically Generated Ticket Content How well are the ES- SMArT
generated ticket titles and contents aligned with those generated by human experts?

Why and How: Often, only the CRM manager creates and escalates development tickets.
These tickets are more general than the summarized conversation, and are represented by a title
and body that describes the problem or requested enhancement. ESSMArT uses abstractive
summarization to create the ticket title, and a thesaurus to generate development tickets from
the summary of tickets studied in RQ1.

RQ4: Quality of Operationalization In comparison to the results of a human expert, how
correct are (i) the predicted priorities of the tickets and (ii) the assignments of the tickets
generated by ESSMArT to developers?

Why and How: The priority of a ticket determines how urgently it should be handled.
When correctly prioritized, tickets are handled in the correct order. The proper assignment of
the ticket to an available developer familiar with the ticket’s domain is critical to implementing
the change request. This is currently a manual process constrained by developer expertise. We
benchmarked with three states of the art classifiers to automate this process by searching for
the analogy of the upcoming ticket with some former tickets.

RQ5: Usefulness of ESSMArT for Experts Utilizing a prototype implementation of ESSMArT,
how much are the generated results aligned with the perception of the human experts and how
useful are the results?

Why and How: External evaluation looks into the perceived value of ESSMArT from
leveraging a prototype implementation. A set of 315 actual customer requests were executed
by 21 CRM experts and 33 project managers. We measured execution time and surveyed the
perceived usefulness of the tool.

The paper is subdivided into nine sections. In Section 2, we begin by providing more details
on the context and motivation for this research. Related work is then analyzed in Section 3.
This is followed by an outline of the ESSMArT method in Section 4. Results for different
types of (internal) validation of the method are presented in Section 5. Results from external
validation follow in Section 6. We provide a discussion on some of the assumptions of the
paper and present them in Section 7, followed in Section 8 by a discussion of the limitations
and threats to validity of the research. We conclude and give an outlook to future research in
Section 9.

2 Context and Motivation: Customer Request Management
at Brightsquid

Brightsquid Secure Communication Corp2 is a global provider of HIPAA-compliant3

communication solutions - providing compliant messaging and large file transfer for
medical and dental professionals since 2009. Secure-Mail is Brightsquid’s core commu-
nication and collaboration platform offering role-based API access to a catalog of services
and automated workflow. It supports aggregating, generating, and sharing protected health

2 https://Brightsquid.com/
3 HIPPA: Health Insurance Portability and Accountability Act of 1996
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information across communities of health care patients, practitioners, and organizations.
Brightsquid has been working on a number of projects in this domain, and this study is
focused on analyzing four of these systems. The company is facing the typical problem of
software start-ups: the need to quickly enter a competitive market with innovative product
ideas while generating short-term revenue by satisfying current customers and their
expectations. At the same time, the company is facing the demand of growing their
customer base (Kabeer et al. 2017).

The Brightsquid process of managing change requests is shown in Fig. 1. A comparison of
the traditional (baseline) process with the one recommended by the proposed ESSMArT
method is illustrated in Appendix 1. When a new customer request arrives, a member of
CRM staff decides whether the request should be transitioned into a development ticket. If yes,
the CRM manager escalates the customer request by summarizing the customer request,
translating it into technical language, and opening a new ticket for the software development
team. Then, the project manager defines the issue type and adds the ticket to the backlog of
customer requests - a set of Jira tickets tagged as “CRM escalated". In each bi-weekly sprint at
Brightsquid, the project manager scans through the escalated tickets, discusses the technical
aspects of the ticket, and decides whether or not to assign the ticket to a member of the
development team. If the ticket is not assigned, the request is maintained in the backlog of
tasks to be solved at a later date.

Between November, 2014 and June, 2017, Brightsquid recorded 4,114 customer requests.
7.8% of these requests were escalated to the development team. These change requests
constituted 10.7% of the whole backlog (including 3,026 tickets overall) over these 32 months.
After mining the time stamp data of the ticket system, we identified ticket escalation by the
CRM manager as the process bottleneck. The duration of time taken by the CRM manager to
make an escalation decision (escalation time) is on average 26.6% of the total time from
receiving to assigning the ticket. Moreover, the escalation process requires both CRM and
project manager involvement (Nayebi et al. 2015).

3 Related Work

Motivated by the problem at Brightsquid, we propose ESSMArT for managing cus-
tomer requests. The scope of this investigation starts at the time the customer request
arrives, escalating the request as well as finally assigning it to a developer. To the best
of our knowledge, this is the first study that analyses both the full process, as well as
associated data repositories. Former studies have focused exclusively on predicting
ticket escalation, or only on summarizing bug reports. Below, we provide an overview
of the existing works.

Fig. 1 Change request management process at Brightsquid
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3.1 Escalating Customer Requests

Bruckhaus et al. (2004) performed one of the inaugural studies in ticket escalation, providing
an early model to predict ticket escalation risk in Sun Microsystems. The study intended to
reduce development process risk and cost by excluding previously- reported system defects.
As the follow up of this study, the authors took a business-oriented perspective in (Ling et al.
2005) and created a system to predict escalations of known defects in enterprise software to
maximize the return on investment (ROI). They limited their study to defect escalation with the
intent of preventing risky and costly escalations. The study used a decision tree classifier to
find the most cost-effective method, which had a significantly higher ROI than any other
method. Also focused on the cost of escalating defects, Sheng et al. (2014) used a cost-
sensitive decision tree algorithm to obtain the lowest possible cost in dealing with defects. This
paper, similarly to the previous one includes negatives in the cost matrix to account for the
benefits of correct classifications.

More recently, Montgomery and Damian (2017) performed a study at IBM Canada to
analyze ticket escalation. Montgomery et al. (2017) suggested the tool ECrits to mitigate
information overload when making customer request escalation decisions. These two
IBM-focused studies define escalation as the process where customers request manage-
ment escalation of their support ticket, which consequently triggers immediate involve-
ment of a senior software engineer. This differs from our study, where escalation is
triggered when CRM experts are unable to directly solve customers’ reported problems.
Montgomery and Damian (2017) focused on determining attributes that most accurately
predict ticket escalation. Their approach included diverse data points, including detailed
customer profiles to predict ticket escalation likelihood, as well as customers’ response
time expectations compared to analysts’ average response time. Using a set of 2.5
million support tickets, they were able to achieve a recall of 0.79. In order to make
accurate predictions at scale, their model focused on selective rather than comprehensive
usage of available data.

Managing customer requests for mobile applications was the content of a survey performed
by Martin et al. (2017). However, the notion of escalation was not included as these studies
focused instead on analyzing and prioritizing customer requests.

3.2 Text Summarization

Automated text summarization methods are usually discussed under two general categories of
extractive, and abstractive text summarization. For a recent survey of these two categories, see
the work of Das and Marins (2007).

3.2.1 Extractive Text Summarization

Extractive text summarization refers to a method of taking a pre-existing document and
extracting the sentences that best make up the content of the document. These sentences are
taken word for word from the original document. This process is guided by a variety of factors
such as the frequency of the words in the sentence, or the similarity of the sentence to the title
of the article (Gupta and Lehal 2010).

Extractive summarization has three major steps. First, an intermediate representation of the
text is constructed. Second, the sentences are scored based on their calculated importance. In
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the third step, the sentence score is used to rank sentences, and those with the highest rank are
selected to be part of the extractive summary. Extractive summarization techniques use
multiple features and different feature weights for selecting the most representative sentences
for the summary. An overview of the extractive summarization process and methods are
illustrated in Fig. 2. Extractive summarization methods are different in terms of constructing
the intermediate representation. Two major representation techniques exist: topic representa-
tion and indicator representation.

Nazar et al. (2016) provide an overview of the literature of software artifacts.
Extractive methods of summarization are most commonly applied in software engineer-
ing. Abstractive summarization, on the other hand, is most often applied to large
documents, such as news reports (Batista et al. 2015), to facilitate concise reading of
the entire document. Researchers have been benchmarking and adopting summarization
techniques to improve the accuracy of summarizing software artifacts. In Table 1, we
provide an overview of those papers most closely related to ours, including application
domains, summarization techniques utilized, and size of datasets. While extractive
methods are typically applied in software engineering studies (Table 2), a majority of
them are either a subset of the general body of text summarization (e.g., Rastkar et al.
(2014)) or are designed independently and for a specific task (e.g., code summarization).

For the design of ESSMArT, we adopted methods from the existing body of knowledge
which were classified by systematic literature reviews (Allahyari et al. 2017; Batista et al.
2015) as belonging to one of the established categories of text summarization.

3.2.2 Abstractive Text Summarization

Abstractive text summarization refers to the summarization of text passages and docu-
ments, utilizing one of many corpus-backed NLP methods. The ultimate goal of this
summarization is to synthesize sentences based on sentence generation, which is done
after clustering, importance determination, and other information extraction techniques or
ranking methods running on top of an underlying language model. Abstractive NLP
summarization techniques most commonly utilize a large corpus and subsequently
generated language model, which enables abstractive methods to perform information
extraction and ranking (Singhal & Bhattacharya 2019).

Indicator 
representation

Graph method 

Machine learning

Topic 
representation

Frequency-driven approach 

Topic word approach

Latent semantic analysis 

Bayesian topic models

2 1

Construct intermediate 
representation Score sentences Select sentences 

for the summary

Fig. 2 Overview of extractive summarization methods inferred from (Allahyari et al. 2017). Summarization
methods mainly differ in the way they construct the intermediate representation
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3.3 Ticket Prioritization and Assignment to Developers

Prioritization and assignment of tickets are well established problems in software engineering
(Anvik et al. 2006; Kim and Ernst 2007). An assistant for creating bug report assignment
recommendations was proposed by Anvik (2016) who demonstrated that sufficiently reliable
bug recommendations can be offered even with limited project knowledge. A new framework

Table 1 Related software engineering research that used extractive summarization

Application domain Paper Summarization technique Dataset

Bug reports Rastkar et al. (2010, 2014) Machine learning 36 Mozilla Bug report
Bug reports Mani et al. (2012) Graph method 55 dB2 bug reports
App reviews Di Sorbo et al. (2016) Topic classification 17 mobile apps
Release notes Moreno et al. (2014) Pre-defined heuristic 1000 release notes

Table 2 Extractive summarization techniques analyzed for Step 1 of ESSMArT

ID Class Type Description

SumBasic Topic representation. Frequency driven Proposed by Vanderwende et al. (2007) used in (Jha
and Mahmoud 2018; Williams and Mahmoud
2017). The method considers frequency of words
in the cluster of input documents as summary
sentence selection criteria.

Edmundson Topic representation Topic driven The method uses word phrase frequency, position in a
document, and key phrases as the summary
sentence selection criteria.

Steinberger Topic representation Latent semantic Uses word co-locations to determine the word’s
context and similarity of word meanings to cluster
sentences and extract the- matic information.

LDA Topic representation Bayesian models Uses measure of divergence between sentences
(also known as KL measure) to rank
and select sentences.

TextRank Indicator representation Graph method Represent document as a graph where nodes
represent sentences and edges demonstrate the
degree of similarity between them. Sentences
in the center of the graph are included
in the summary.

Enron Indicator representation Machine learning Trained a Naive Bayes classifier on the Enron email
dataset. Enron contains data from 150 users and a
total of about 0.5 MB messages. The data was
made public by the Federal Energy Regulatory
Commission during its investigation7.

UDC Indicator representation Machine learning Trained a Naive Bayes classifer on the
Ubuntu-related conversations on the Freen- ode
IRC network8. Internet Relay Chat (IRC) is a form
of real-time Internet chat designed for group
(many-to-many) communication in discussion fo-
rums called channels. We used 5GB of chats be-
tween 2004 and 2017.

BSC Indicator representation Machine learning Trained a Naive Bayes classifer on the Brightsquid
CRM conversation with customers logged
between 2014 and 2017.
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for bug triaging was proposed by Xia et al. (2017) using a specialized topic modeling
algorithm named multi-feature topic model (MTM) which extends Latent Dirichlet Allocation
(LDA) for bug triaging. Another recent method is provided by Bandera et al. (2018). Their
patented approach is “based on identifying and scoring quantitative metrics, qualitative
indicators, and customer tones contained in the content of respective problem tickets and
determining an action step for each respective problem ticket".

Automated assignment of developers to tickets is a stand-alone research topic which has
been studied by various authors. More recently, Jonsson et al. (2016) studied the usage of the
ensemble-based machine learner called Stacked Generalization (SG) by adopting the methods
introduced by Wolpert (1992) which combines several learner types (such as Naive Bayes,
Support Vector Machine, KNN). The authors prove SG’s applicability in large scale industrial
contexts, and moreover, provided a comprehensive analysis of related work in automated bug
assignment (Jonsson et al. 2016).

With ESSMArT, our intent was not to perform a comparative analysis to discover the most
effective automated bug triaging assignment methods or techniques. Instead, we analyzed a
dataset of prioritized and assigned bug tickets against three often-used machine learning
techniques known to the decision makers. While investigating learner- impact on the complete
triaging process, we demonstrated that applying individual learner components provides “good
enough" real-world results.

4 ESSMArT for Automated Customer Request Management

The design of the method was inspired by real-world projects at Brightsquid. ESSMArT
consists of five main steps as shown in Fig. 3. While some of these steps (e.g., summarization,
escalation) were adapted from existing work, the main value of our method is that it provides a
holistic approach covering the complete process starting from the arrival of a change request
through to issuing a ticket and assigning it to a developer. As part of the method development,
we studied and compared different variants of implementing these steps, described in the
following subsections.

4.1 Condense Customer Requests

When a customer request is received, the CRM staff member summarizes the incoming request
and then has the customer validate whether the summarization correctly reflects their request.
Thus, Step 1 of ESSMArT starts with automated summarization of the customer request.

We used open source python libraries “Summy",4 “Summa NLP",5 and “Pyrouge"6 to
implement summarization techniques for ESSMArT.

By analyzing the 4,114 customer requests, we found that they were initially submitted to
the CRM and included on average 9.3 (median = 8.8) sentences. Similarly, the summaries
created by the CRM staff included on average 4.7 sentences (median = 4.1). Furthermore, we
compared the length of tickets generated by eight different CRM staff members and could not
find any significant length difference after running an ANOVA test (p − value = 0.31). This

4 https://github.com/miso-belica/sumy
5 https://github.com/summanlp
6 https://github.com/summanlp
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means that the ticket length is about half the length of the original conversation, and is
independent of the CRM team member who receives and responds to the customer request.
To condense the conversation in the form of a customer ticket we used extractive summari-
zation, limiting the number of sentences for our extractive summarization to five sentences.
Summaries created by the CRM staff were used as the benchmark for measuring performance
of our automated methods.

To select the best summarization techniques in Step 1 of ESSMArT, we compared various
extractive summarization methods. The methods were selected based on their popularity in
literature, in particular in software engineering research. In addition, we looked at the
availability of the summarization methods as open source tools or libraries. For the frequency
driven approach we used the SumBasic algorithm suggested by Vanderwende et al. (2007). On
the topic word approach, we applied the Edmundson method (Edmundson 1969). For Latent
Semantic Analysis (LSA) we applied the Steinberger and Jezek method (Steinberger & Jezek
2004). For Bayesian topic modeling, we used Textrank suggested by Mihalcea and Tarau
(2004). Table 1 provides a summary and a pointer to related literature.

Also similar to Rastkar et al. (2014), we used machine learning to build an indicator
representation. We built classifiers using Naive Bayes (Rish et al. 2001) as it proved to
outperform other classifiers for summarization tasks (Allahyari et al. 2017). We trained the
classifier only on the content of the tickets and based on the following three datasets: (i) The
Enron dataset of emails, as it includes the conversation between human subjects (Carenini
et al. 2007; Murray & Carenini 2008). One of the authors annotated the summary of this

Fig. 3 Process of ESSMArT for automated generation of developer tickets from customer requests
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dataset, (ii) the conversation between developers and users of Ubuntu on Fedora channel
(denoted as UDC) with similar nature as the conversations at Brightsquid. One of the authors
annotated the summary of this dataset; and (iii) the conversations between CRM team and
Brightsquid customers (denoted as BSC). Two of the authors annotated these summaries.

To guide among the existing summarization techniques, we performed a pair-wise compar-
ison of the extractive summarization methods. Second, we compared the results of automated
extractive summarization with the summaries created by human experts. For this purpose, we
used Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin 2004). ROUGE is the
most widely used method for evaluation of summarization quality. While ROUGE has different
variations, we followed (Allahyari et al. 2017) and used ROUGE-n and ROUGE-SU.

ROUGE-n is based on the comparison of n-grams. Within each comparison, one of the
summaries is considered as the reference and the other summary, also known as the candidate, is
compared against it. Within this comparison process, ROUGE-n elicits bi-grams and tri-grams:

ROUGE n ¼ p
q

ð1Þ

Where p represents the number of common n-grams between the two candidate summaries and
q represents the number of n-grams that were extracted from reference summary only. ROUGE-
SU elicits both bi-grams and uni-grams and allows the insertion of words in bi-grams. In other
words, the bi-grams do not need to be consecutive sequences of words.

4.2 Predict Escalation

In Step 2 of ESSMArT, we predict whether a ticket should be escalated or not (See Fig. 3).
To this end, we trained and compared the performance of three classifiers: Support Vector
Machine (Hearst et al. 1998), Naive Bayes (Rish et al. 2001), and Random Forest (Liaw
et al. 2002). Each of these techniques have been previously applied to solve software
engineering problems, including fault prediction (Malhotra 2015) or predicting software
outcomes (Cerpa et al. 2016). Our intent was not to rank the methods in general, but rather
to find one that works best with the data set available. We found that Random Forest, one
of the ensemble learning techniques which has been very successful in handling small-
sized and imbalanced datasets (Galar et al. 2012), works well with a mixture of numerical
and categorical attributes.

For training the classifiers, we used Scikit’s package of Python. When applicable, we
applied an exhaustive grid search over classifier parameters (such as Kernel, Gamma, and C
values) in a way to maximize the score of the data omitted. GridSearchCV exhaustively
considers all parameter combinations and optimizes parameters by cross- validated evaluation.
We used the GridSearchCV function of Scikit and leveraged both the textual content of the
requests as well as the non-textual content:

(i) Using textual content of inquiries: We trained and compared classifiers using the term
frequency-inverse document frequency (TF-IDF) values of the words that make up the
tickets. TF-IDF is a statistical measure frequently used in information retrieval and text
mining to evaluate the importance of words in a collection of documents (Ramos et al.
2003). It consists of two components: Term Frequency (TF), which is a count of the
number of times a word appears in a document, normalized by the total number of words
in that document. The second component is the Inverse Document Frequency (IDF),

Empirical Software Engineering (2019) 24:3755–37893764



www.manaraa.com

which is the logarithm of the number of documents in the corpus divided by the number
of documents where the particular term appears.

We compared classifiers based on different text attributes. We compared the TF- IDF
with (i) Bag-of-Words (BoW) (Wallach 2006) as a representation of the conversations, (ii)
the extractive summaries, and (iii) a combination of the two. All three options were
studied using both lemmatized and non-lemmatized tickets. Bag-of-Words is a simple
approach for representing textual information. It is used to describe the occurrence of
words within a document. All classifiers were run using the TF-IDF of the conversation
and the extractive summaries.

(ii) Using non-textual attributes for prediction: We elaborated on the textual content of
the customers’ inquiries by using other attributes recorded alongside it in predicting
the escalation and priority of tickets. To evaluate if using any of the recorded data,
such as requester, organization, and the time stamp (see the full list in Table 3), could
increase the accuracy of the classifiers, we used the Minimum Redundancy Maxi-
mum Relevance (mRMR) algorithm (Peng and Ding 2005). mRMR is an algorithm
to select features for classifiers mRMR is an algorithm to select features for classi-
fiers in a way that the selected features have strong correlation with the classification
variable (maximum relevance), but being mutually far away from each other (min-
imum redundancy). This scheme has been found to be more powerful than the simple
maximum relevance selection (Auffarth et al. 2010). We used an R software envi-
ronment implementation of mRMR algorithm for this purpose. mRMR is superior to
methods such as information gain analysis (Yu and Liu 2004) as mRMR7 considers
the relation between the attributes as well.

4.3 Create a Ticket Title and Content

Each development ticket consists of a title and a body that describes the problem. In Step 3 of
ESSMArT, we used abstractive summarization to suggest ticket titles. The knowledge bases
used for abstractive NLP summarization techniques most commonly utilize a large corpus and
subsequently generated language model that allows for abstractive methods to perform
information extraction and ranking.

We implemented the abstractive summarization using AbTextSumm (Banerjee et al. 2015).
This method was designed and initially implemented by Banerjee et. al (2015). The abstractive
summarization proposed by Banerjee et al. (2015) includes four main steps (i) identifying most
important sentences (ii) clustering words (ii) generating k-shortest paths in each cluster using
word graph, and (iv) optimized selection of words maximizing information content and
readability of the summary. Abstractive text summarization is a growing field of research
and its state of the art body of knowledge includes variety of techniques (Young et al. 2018).
We used the method suggested by Banerjee et al. (2015) as it had superior performance in
comparison to the other methods, in addition to an open source library (in Python) provided by
the authors, which we used in developing ESSMArT.

7 Comparing mRMR with Principle Component Analysis (PCA) (Wold et al. 1987) and Independent Com-
ponent Analysis (ICA) (Hyvärinen and Oja 2004), mRMR does not need the mapping of features into the
orthogonal and independent space.
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In Step 4 of ESSMArT, we built a thesaurus to map customer language into terms
understandable by the developers. In a request, customers report their experience on using
the software. However, a development ticket reflects the high level story in a way that is more
understandable for the development team (for example to reproduce bugs). When a customer
communicates with a CRM team, only the name and surname of the customer needs to be
specified and the CRM team member will refer to their customer database to get related
information such as the role of the customer, organization, and brand name.8 When creating
the development ticket the content should be self explanatory. To make this happen we take the
summary of the conversation that we created in Step 1 of ESSMArT and:

(i) Specify brand name: The development ticket should explicitly mention which product the
ticket relates to. As a result, each ticket starts with “in the XYZ systems” within which,
XYZ is the name of the system. This system is the systems that have been granted access
into once deploying the product.

(ii) Specify the role of the requester: The development ticket should specify the role or the
requester to reflect the story. We found this by mining the satellite data around each
customer. For example, if “Jane” is calling from “Crowfoot clinic” we find in the
organization chart that she is the “administrator”.

(iii) Abstract specific names to general entities: The specific names should be replaced
and mapped to a known general entity (instead of “John Doe”, it should be
“patient”). In the case that we fail to map a specific name into a general entity, we
eliminate it from the sentence.

Figure 4 shows this transition for a sample sentence. To make these mappings we built a
thesaurus based on the Brightsquid data. To build this thesaurus we specified a set of documents
that contain the related information about our entities. We used the user stories and release
notes from Brightsquid as well as descriptions of the organizations using Brightsquid products.
We used word co-occurrence and grammatical dependencies (Schütze 1998) using the Stanford
NLP toolkit (Manning et al. 2014). Then we detected the specific names within the summaries

8 We focused on the four products of Brightsquid among all the developed systems by them

Table 3 Attributes associated with customers’ request

ID Name Description

Att1 Conversation Information provided in the ticket’s conversation
Att2 Requester The individual who requested the ticket originally
Att3 Ticket type What type of request was made
Att4 Tags What tags are present in the ticket
Att5 Via What medium the ticket was introduced through
Att6 Severity The extent to which the ticket affects the product
Att7 Assignee Who was assigned to handle the ticket
Att8 Time open How long it has been since opening a ticket
Att9 Time escalated How long it has been since escalating the ticket
Att10 Time to assign How long the ticket takes to be assigned
Att11 Subject Content contained within the subject
Att12 Brand name Which product the ticket relates to
Att13 Organization Which organization is requesting the ticket
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using rule-based Named-Entity Recognition (NER) (Mohit 2014). Rule-based NER uses a set
of named entity extraction rules for different types of named entity classes with an engine that
applies the rules and the lexicons to the text (Mohit 2014).

4.4 Prioritize and Assign Tickets

Once the ticket is created, each is assigned a priority in the backlog of the project, the options
being Blocker, Critical, Major, Minor, or Trivial. Then, a developer is assigned to the ticket to
solve and close it. In Step 5 of ESSMArT, for both assignment and prioritization of the ticket,
we reasoned by analogy. We built and compared the usage of three state of the art classifiers
(Naive Bayes, SVM, and Random Forest) to predict the priority of the ticket and subsequent
assignment to a developer. To find the analogy between the ticket and formerly assigned and
prioritized tickets, we used the mRMRmeasure to select attributes among the list of Table 3 to
train the classifiers. The details have been discussed in the method for Step 2 (See Section 4.2).

5 Internal Evaluation

The proposed method has been evaluated at the different steps and from two different
perspectives (i.e., internal and external perspective). An overview of all evaluation done is
given in Fig. 5. In this section, we discuss the different aspects of internal evaluation of
ESSMArT. The analysis refers to RQ1, RQ2, RQ3, and RQ4. By its nature, this all is a
retrospective analysis based on Brightsquid data.

Fig. 4 An example of transforming a sentence from customer request to a development ticket using ESSMArT

Fig. 5 Evaluation of ESSMArT

Empirical Software Engineering (2019) 24:3755–3789 3767



www.manaraa.com

Customer requests were received by email, phone, or textual chatting and are stored in
the Zendesk repository of Brightsquid. Looking over the 4,111 tickets in this study, each
customer request has an average length of 152 words. This body of text has the
vocabulary size of 3,276 words. 7.8% of all customer requests were escalated, summa-
rized, and stored in a Jira repository. The development tickets have an average length of
87 words and a more focused vocabulary size of 2,021 words. For internal evaluation of
ticket escalation, we applied 10-fold cross-validation and provided the average results of
running it ten times.

5.1 RQ1: Summarization of Customer Requests

To condense the conversation in the form of a customer ticket we used extractive summari-
zation. We applied and compared the results of eight summarization techniques, which covered
different extractive summarization classes based on unsupervised (topic representation, indi-
cator representation) and supervised learning (see Table 2). For supervised learning, we trained
a Naive Bayes classifier on three different datasets: Email communications, Dialogues between
developers and users of Ubuntu, and Brightsquid’s conversation with the customers. We
compared the eight techniques pairwise based on ROUGE and ROUGE-SU measures. Table 4
shows the result of pairwise comparison of the summarization techniques. Within this table,
each row is compared with the technique in the column being considered as the baseline
summary. As a general trend, the results of supervised learning methods (Enron, UDC, and
BSC) are performing closely similar to each other. Among the unsupervised methods,
TextRank almost always worked better than the others.

We further compared these methods by comparing these eight different summarization
methods with summaries from CRM experts at Brightsquid. As illustrated in Fig. 6 we found
that the supervised extractive summarization trained on Bright- squid data performs best, but it
is only 4.2% better in terms of F1-score than the classifier trained with the Ubuntu dataset
(UDC). TextRank as an unsupervised learning method performs as the third best method in our
case study. Overall, Steinberger is the worst performing classifier. It is 20% less accurate than
BSC in terms of the F1-score. Considering the effort needed to prepare training sets, unsu-
pervised methods are proven to be an alternative to supervised methods.

Supervised learning based on context specific Brightsquid data performs best for summarizing customer request
and outperforms the best unsupervised technique by 10%.

5.2 RQ2: Predicting Escalation

We compared three state-of-the art classifiers that exhibit good performance with a short text to
predict the escalation of a user’s requests, the priority of the tickets, and the developers
assigned to it.

We used mRMR to select non-textual content for predicting escalation. However, we did not
find any of the attributes Att2 to Att13 significantly increased the accuracy of the predictive model
(Step 2 of ESMMArT). This is aligned with the current practice at Brightsquid. In Brightsquid the
content of the conversation, specifically the communicated concern by the customer, is the only
decisive factor for the CRM team to escalate a ticket to the development team. As a result, we
focused our effort on automating escalation only on the content of the tickets.
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To deal with the imbalanced number of escalated and non-escalated tickets, we down-
sampled the non-escalated conversations. We benchmarked different techniques for increasing
the accuracy of the textual similarity analysis such as customizing the list of stop words,
lemmatization, stemming, BOW (bag-of-words), TF-IDF, and used extractive summaries for
predicting escalation. Overall, we found that by using tf-idf the F1-score of the three classifiers
is better by 8.7% on average. Also, we found that by using lemmatization instead of Porter’s
stemming, the F1-scores were improved by 4.3% on average. Our results also showed that
eliminating a customized set of stop words from the conversation increases the accuracy of the
classifier by 6.1% on average. Table 5 summarizes the results of the classification techniques
using the 4,114 conversations to predict ticket escalation.Within the tables, the numbers in italic
font represent the corresponding top values. The confusion matrix is presented in Appendix 2.

0.8

0.75

0.7

0.65

0.6

0.55

0.5

Methods

Precision Recall F-Score

S
te

in
b
.

E
d
m

o
n
.

S
u
m

B
a
s
.

E
n
r
o
n

L
D

A

T
e
x
tR

a
.

U
D

C

B
S

C

Fig. 6 Performance of extractive summarization techniques in comparison with human generated summaries
using ROUGE-SU

Table 5 Evaluation of classification algorithms for predicting tickets’ escalation

Precision Recall F1

Naive Bayes
Conversation 0.83 0.45 0.58
Conversation + Lemmatization 0.85 0.49 0.62
Extractive summary + Lemmatization 0.82 0.43 0.57
Conversation + Extractive summary + Lemmatization 0.86 0.53 0.65

Support Vector Machine (SVM)
Conversation 0.64 0.43 0.51
Conversation + Lemmatization 0.62 0.45 0.52
Extractive summary + Lemmatization 0.60 0.42 0.49
Conversation + Extractive summary + Lemmatization 0.62 0.49 0.54

RandomForest
Conversation 0.88 0.49 0.62
Conversation + Lemmatization 0.89 0.53 0.66
Extractive summary + Lemmatization 0.89 0.42 0.56
Conversation + Extractive summary + Lemmatization 0.90 0.55 0.68
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The classifiers used were Support Vector Machine, Naive Bayes, and Random Forest. For
each of them, four alternatives were evaluated. Looking at the F1 measure as the one balancing
precision and recall, we found that the combination of just looking at the conversation and the
extractive summary in combination with lemmatization performed the most promising. When
comparing the classification techniques, Random Forest performs best in terms of precision,
and best in F1 on the best configuration. In contrast, SVM seems to be the lowest performing
among the three techniques overall.

Random Forest classifier trained on a combination of conversation and extractive summarization outperforms the
other models in terms of precision. Using the extractive summaries increases the F1-score of the prediction.

5.3 RQ3: Quality of Automatically Generated Ticket Content

Each development ticket consists of content and a title. ESSMArT suggests the ticket content
by using a thesaurus for mapping and by generalizing entities from extractive summaries of
RQ1 as input. The ticket title is created from using abstractive summarization. We report the
results of evaluating the content and title of these tickets.

Evaluating the Content of the Development Tickets To bridge between the customer
request and the development ticket we built a thesaurus that maps the customer terminology
and specific names into the developers’ terminology or general entities.

For building the thesaurus we used 304 separate documents including customer stories,
release notes, organization and brand descriptions, and team descriptions. As the result of this
automated process, we built a thesaurus with 3,301 entries. We manually went through this
thesaurus and in particular searched for the personnel names. We mapped each specific
personnel name to an organizational role. For each distinct specific name (1,908 out of
2,467) we entered three separate entries for the first name, surname and the name as a whole.
We ended up with a thesaurus with 7,117 entries in total. We then used ROUGE-SU for
evaluating the alignment of the generated tickets with the tickets extracted by human experts.

Figure 7 shows the results of the comparison between automated and manually created
tickets. In a majority of cases, the precision of the classifiers is better than their recall.
Looking into the F1-Score, the combination of the supervised learning method and
thesaurus performs best. Interestingly, unsupervised methods based on the graph model
of represented indicators (TextRank (Mihalcea and Tarau 2004)) combined with the use of
our thesaurus performed well.

Supervised learning trained on Brightsquid data combined with the use of a thesaurus performs best among all
techniques. The accuracy is 5% better than the best unsupervised method in terms of F1-score.

Evaluating the Title of the Development Tickets We compared the titles created using
abstractive summarization with the human-generated titles using ROUGE-SU. Within the
process of creating the ticket titles, we limited the size of the abstractive summary to 11 words
as it was the average length of the ticket titles in Brightsquid. We presented the results of this
comparison in Table 6. Training the model based on the Brightsquid data performed the best
among the other models having an F1-score of 0.65.
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5.4 RQ4: Prioritization and Assignment of Tickets

We compared three state of the art classifiers with good performance proven in other contexts.
We used the ticket title to predict the priority of the escalated tickets and assign it to a developer.

5.4.1 Prediction of the Priority of Escalated Tickets

Several attributes are recorded along with the customer requests as shown in Table 3. The
mRMR analysis showed the importance of organization and brand name for predicting the
priority of the tickets. We compared three classifiers, Naive Bayes, Support

Vector Machine (SVM), and Random Forest. We benchmarked the performance of these
classifiers using the conversation between customers and Brightsquid, the extractive and
abstractive summaries of the apps, as well as the organization and brand name attributes. Similar
to the escalation prediction in the previous section, we evaluated the impact of different text pre-
processing and processing methods. In all cases, lemmatization was applied. The results of our
benchmark are shown in Table 7. The confusion matrix is presented in Appendix 2.

When using the textual content of the conversation only, Random Forest classifiers have a
slightly better performance in comparison to Naive Bayes. Using extractive and abstractive
summaries for predicting the tickets priority increased the F1-score of the classifiers up to
8.6% on average. Having abstractive summarization on top of that further increased the F1-

Table 6 Ticket titles using ESSMArT summarization in comparison with human experts using ROUGE-SU

Abstractive summarization Precision Recall F1

Enron 0.61 0.57 0.59
UDC 0.56 0.53 0.54
BSC 0.68 0.63 0.65

0.8

0.75

0.7

0.65

0.60

0.55

0.5

Methods

Precision Recall F-Score

E
d
m

o
n
.

S
te

in
b
.

S
u
m

B
a
s
.

E
n

r
o
n

L
D

A

T
e
x
tR

a
.

U
D

C

B
S

C

Fig. 7 Comparison of the content of the development tickets generated by human experts with the ones
generated with different summarization techniques and the thesaurus in RQ3 using ROUGE-SU
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score. Moreover, using organization and brand name increased the F1-score by up to 12.3%.
When comparing across all pre-processing and processing options, a Naive Bayes classifier
using both textual and non-textual attributes performs best.

5.4.2 Assignment of Tickets to Developers

Similar to what we did for predicting prioritization, we compared the three state of the art
classifiers with multiple textual attributes. The results of this benchmarking are shown in Table 8.
The results showed that similar to the ticket prioritization, using the content of the conversation
along with the abstractive and extractive summaries performs the best and Naive Bayes outper-
forms SVM and Random Forest in this task. The confusion matrix is presented in Appendix 2.

We used mRMR to select non-textual features (as listed in Table 3 and found brand name
as an important factor for ticket assignment. On average, using the brand name on top of the
textual features increased the F1-Score of the classifiers.

Using Naive Bayes perform the best for prioritizing (F1-score = 0.73) and assigning the tickets
(F1-score = 0.86). The results showed that using extractive and abstractive summarization along with other
features increases the accuracy of these predictions.

6 External Evaluation

So far, we built and compared the state-of-the-art techniques known for the different stages in the
process of managing customer requests. As a form of retrospective analysis, we called that
internal evaluation. However, the question of the perceived value of applying the method is still

Table 7 Evaluation of classification algorithms for predicting tickets’ priority

Precision Recall F1

Naive Bayes
Conversation 0.64 0.61 0.62
Extractive summary 0.64 0.62 0.63
Conversation + Extractive summary 0.68 0.63 0.65
Abstractive summary + Extractive summary 0.68 0.66 0.67
Conversation + Abstractive summary + Extractive summary 0.68 0.66 0.67
Abstractive summary + Extractive summary + Organization+ Brand name 0.74 0.72 0.73

Support Vector Machine
Conversation 0.52 0.51 0.51
Extractive summary 0.52 0.53 0.52
Conversation + Extractive summary 0.55 0.53 0.54
Abstractive summary + Extractive summary 0.56 0.53 0.54
Conversation + Abstractive summary + Extractive summary 0.58 0.55 0.56
Abstractive summary + Extractive summary + Organization + Brand name 0.70 0.67 0.68

Random Forest
Conversation 0.64 0.62 0.63
Extractive summary 0.66 0.63 0.64
Conversation + Extractive summary 0.66 0.63 0.64
Abstractive summary + Extractive summary 0.69 0.66 0.67
Conversation + Abstractive summary + Extractive summary 0.70 0.68 0.69
Abstractive summary + Extractive summary + Organization+ Brand name 0.73 0.70 0.71
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open. In this section, ESSMArT is evaluated by CRM experts and project managers. The section
is closely related to RQ5, and is called external evaluation. The subjects are asked whether
ESSMArT makes the process of escalation faster and better. As we did not have access to
employees of Brightsquid, we recruited 21 CRM experts and 33 project managers from outside.
We used convenient sampling for recruiting participants from social media to participate in this
study. The whole external evaluation is described in the subsequent subsections.

6.1 Protocol for External Evaluation of ESSMArT

To evaluate the performance of ESSMArT, we asked CRM experts and project managers to go
through the escalation of a sample set of customer requests, first without and then with using
ESSMArT. Offering the task through social platforms, we attracted 21 CRM experts and 33
project managers to participate. The CRM experts participating in our study had 4.5 years of
experience in a related job on average with a minimum of 18 months and a maximum of 13
years of experience. The participating project managers had an average of 6.2 years of
experience in a related job, with a minimum of 4 years and a maximum of 16 years. We
assigned 15 escalated customer requests to each CRM expert to perform the evaluation.

For the evaluation, we first performed a manual process for escalating tickets and then we
used ESSMArT:

Manual Process We provided the complete conversation of 315 Brightsquid customer requests
and asked to provide a summary. Each CRM expert evaluated 15 anonymized conversations and
was asked to decide if each ticket should be escalated. Furthermore, we asked each to provide an
extractive summary by selecting a subset of sentences of the conversation, without applying any
rewording (Rastkar et al. 2014). We recorded the time needed per ticket called Escalationtime.

Table 8 Evaluation of classification algorithms for assigning tickets to developers

Precision Recall F1
Naive Bayes

Conversation 0.8 0.83 0.81
Extractive summary 0.81 0.83 0.82
Conversation + Extractive summary 0.85 0.83 0.84
Abstractive summary + Extractive summary 0.85 0.84 0.84
Conversation + Abstractive summary + Extractive summary 0.87 0.84 0.85
Abstractive summary + Extractive summary + Brand name 0.89 0.84 0.86

Support Vector Machine
Conversation 0.68 0.61 0.64
Extractive summary 0.68 0.62 0.65
Conversation + Extractive summary 0.68 0.63 0.65
Abstractive summary + Extractive summary 0.69 0.65 0.67
Conversation + Abstractive summary + Extractive summary 0.71 0.67 0.69
Abstractive summary + Extractive summary + Brand name 0.74 0.68 0.71

Random Forest
Conversation 0.72 0.73 0.72
Extractive summary 0.76 0.73 0.74
Conversation + Extractive summary 0.76 0.75 0.75
Abstractive summary + Extractive summary 0.78 0.74 0.76
Conversation + Abstractive summary + Extractive summary 0.8 0.78 0.79
Abstractive summary + Extractive summary + Brand name 0.83 0.78 0.8
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We submitted the summary of 315 customer requests to the 33 project managers partici-
pating in our experiment. Each project manager prepared a development ticket based on the
summarized customer request. We recorded this time as Decisiontime. The screenshot of the
survey for manual escalation is shown in Fig. 8.

ESSMArT Way We provided the prototype implementation of ESSMArT to the CRM experts
and the project managers. We logged the time taken by them to perform each step. To make the
results comparable with the manual process, we did not allow any CRM expert or project
manager to work on any ticket they had already handled in the manual process. Figure 9 shows
the screenshot of ESSMArT for a sample request. The left screen shows the ESSMArT UI for
CRM experts used to log the Escalationtime while the right one is the UI shown to the project
managers and logged as Decisiontime.

6.2 RQ5: Usefulness of ESSMArT for Experts

For the external evaluation, we surveyed experts to find the usefulness of the results and to
figure out if the process would be faster for humans using our prototype tool.

6.2.1 Are the ESSMArT Results Aligned with Perception of the External Experts?

We compared the sentences selected by CRM experts with those selected by ESSMArT. Based
on the results of internal evaluation in Section 5, we used Random Forest trained with former
Brightsquid data for summarization. We asked survey participants in the role of CRM to select
the most representative sentences. Comparing the selected sentences selected by ESSMArT
and CRM experts resulted in 0.71 precision and 0.77 recall (F 1 − score = 0.73). Figure 10 -
(a) shows the distribution of the number of sentences that were selected differently between
ESSMArT and human experts. To evaluate the alignment of the tickets generates by
ESSMArT with those generated by human experts, we tracked the number of words changed
by project managers on the ESSMArT generated ticket. Figure 10 - (b) shows the distribution
of the changed words for the 315 customer requests. In 25% of the tickets no word were

Fig. 8 Process of manual escalation for evaluation of ESSMArT. The left screen shot was shown to the CRM
experts while the right one was shown to the project managers
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changed and in 8.5% of the cases, more than 10 words were changed. Overall, across 315
customer requests, 3.7 words on average were changed by human experts.

Figure 11 shows the results of the questions asked to the 54 survey participants. The survey
questions are presented as Appendix 3 to the paper. We asked the participants how much they
agree that the ESSMArT results were understandable. Only 1.9% (one) of the participants
disagreed with this statement. 51.9% of the participants stated they likely or very likely would
use ESSMArT in practice. Trusting decision support tools is a common problem in their
usability (Du and Ruhe 2009). 68.6% of participants stated that they trust the ESSMArT results
while 7.5% of them stated it is unlikely that they would trust the results.

ESSMArT provides suggestions that are 71% aligned to the selection of human experts. The average change of
7.5% words per ticket also demonstrates the usefulness of its results for project managers.

6.3 Does ESSMArT Make the Escalation Process Faster?

We logged the Escalationtime and Decisiontime for 315 customer requests when done
completely manual and by using ESSMArT. Figure 12 shows the the time taken for each of

Fig. 9 Applying the prototype tool of ESSMArT, the left figure shows the summarization of a sample customer
request. The right one suggests the content and title of the sample development ticket
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Fig. 10 Analysis of the response to the survey questions from 21 CRM experts and 33 project managers in terms
of the number of different sentences (left) and the number of words changed (right)
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these tasks. Figure 12 - (a) shows the Escalationtime for CRM experts with and without
ESSMarT. Using ESSMArT reduces Escalationtime by 3.2 minutes on average, per ticket:

(i) ESSMArT (Escalationtime) <Manual(Escalationtime): For 297 (94.2%) of the requests,
ESSMArT allowed CRM experts do the task faster.

(ii) ESSMArT (Escalationtime) ≥Manual(Escalationtime): For 18 (5.8%) of the customer
requests ESSMArT appeared not helpful in making the process faster. In these cases, the
manual process took on average 0.35 s less time for escalation. Considering the small
number of cases, small time difference between cases, and the same ticket having been
escalated by different participants for manual and ESSMArT enabled process, we
attribute variances to differences in participant cognitive abilitities as well as possible
participant distractions.

Strongly 
negative Neutral Strongly 

positive

Understandability of ESSMArT results

Using ESSMArT in practice

Trusting ESSMArT results

Reduce the cycle time of change  requests

Reduce time needed for CRM  task

Reduce time needed for PM  task

0% 1.9% 25.9% 57.4% 14.8%

3.7% 9.3% 35.2% 42.6% 9.3%

1.9% 5.6% 24.1% 63% 5.6%

3.7%

0%

13% 35.2% 24.1% 24.1%

9.1% 6.1% 54.4% 30.3%

9.5% 9.5% 14.3% 42.9% 23.8%

Fig. 11 Analysis of responses from 21 CRM experts and 33 project managers having participated in the survey
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Fig. 12 The logged time when the escalation is done manually versus escalation using ES- SMArT. This is the
sum of the time taken by CRM experts and by project managers in categorizing 315 change requests
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Similarly, we logged and compared the Decisiontime for the participated project managers.
In this case, the Decisiontime has been improved in all cases. Using ESS- MArT allowed
project managers to decide on average 6.3 minutes faster in comparison to the manual process.
Figure 12-(b) shows the boxplot for the time taken by project managers to decide on a ticket
with and without using ESSMArT.

Independently, we asked the survey participants how likely ESSMArT usage would reduce
the cycle time of change requests. 48.2% of the participants agreed or strongly agreed that
ESSMArT reduces the time needed for escalating a customer request. Of the CRM experts,
54.4% agreed and 30.3% strongly agreed that ESSMArT make their job faster and 42.9% of
the project managers agreed with 23.8% strongly agreeing about the same for their escalation
tasks. Figure 12-(c) shows the total time saved for each expert across all the tickets.

ESSMArT reduces the escalation time of a change request by 9.2 min on average. 84.7% of the CRM experts and
66.7% of project managers agreed or strongly agreed that ESSMArT helps them to perform the task faster.

7 Discussion

7.1 Scope of ESSMArT

We focused on a system to support the decision of CRM experts and the project managers with
the intent to increase the satisfaction of the end users (customers). Software engineering
literature is rich in providing decision support and recommendations for software developers
for different tasks (Robillard et al. 2014), such as finding the resolution of a reported bug or
assigning developers to bugs. Nowadays, there is often some level of automation for devel-
opment decisions in software companies (like Brightsquid). In this study, we have not studied
the overhead for integrating ESSMArT with such existing systems. On the other hand, we do
not have any evidence or indication if the full automation of the whole pipeline is desirable as
that would involve more stakeholders in a single decision support system and increase the cost
of maintenance. Hence, one might gather evidence on the pros and cons of extending the scope
of ESSMArT to support development decisions and possibly extend ESSMArT.

7.2 Criteria for Selecting Machine Learning Models

Understandability of the Results With the recent advances in machine learning state of the
art and practice there is an increasing temptation to use the methods that result in the
highest precision and accuracy in the results. Understanding the logic and process that
leads into a particular machine learning result often needs solid scientific understanding of
the underlying model and techniques. To this end, the decision maker should understand
the reasoning behind automated models to trust and use the results. In the case of this study
with Brightsquid, we assisted three types of decision makers: CRM staff, CRM chief, and
project manager. They all confirmed the need for understandability of the automation
results for adopting and integrating ESSMArT.

Building on Top of the Existing Practices We emphasized the importance of reusing the
state of the art practices. We selected and used techniques and data sets that were
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replicable and preferably used the open source implementation of the techniques. While
this was not possible for all the benchmarked techniques, most of the ESSMArT modules
are based on open libraries.

7.3 Training machine learning models

We studied the usefulness of features (textual and non-textual) in increasing the accuracy of
our machine learning models. However;.

– In predicting escalation (Section 5.2), none of the Att2 to Att13 significantly increase the
accuracy of our predictive model (Step 2) hence we relied on content of the conversations
only. This was also aligned with the current practice at Bright- squid.

– The mRMR analysis showed the importance of Organization (Att13) and brand name
(Att12) in predicting the priority of the tickets (Section 5.4.1).

– Using the same method, we found that only brand name (Att12) is an important feature for
predicting the assignment of the tickets (Section 5.4.2).

In a nutshell, our study showed that using more features does not necessarily imply better
performance of machine learning techniques. We follow the argumentation of Lemberger et al.
(Lemberger and Morel 2013) that simpler models make it easier for users to understand and
accept the suggestions made by them.

8 Limitations and Threats to Validity

The ESSMArT process described in Fig. 2 is general enough to be applicable beyond
Brightsquid. One key prerequisite for the applicability is the existence of both a customer
ticket as well as a developer ticket system. In any case, the results of our study should be
treated with caution due to the existing threats to validity discussed below.

Construct Validity To measure the quality of summarization techniques for condensing
customer request we used the ROUGE metrics as it was shown valid results in similar contexts
before. In most of the comparisons, we compared the result of summarization with the content
generated by human experts at Brightsquid, retrospectively. For training machine learning
extractive summarization, we used a human annotator which her annotation might have been
biased and impose threats to the validity of the results Ideally, the threat would be mitigated by
involving more than one person in the annotation process (e.g as done in (Nayebi et al. 2017)).
In former studies, with the intent to find the best summarization method, researchers asked
external developers to take the bug reports and select a subset of the sentences. We extended
the scope of the evaluation and intended to provide evidence that the results of our automation
could be used to assist human experts.

We trained and compared classifiers using the term frequency-inverse document frequency
(TF-IDF) values of the words that make up the tickets. We did not experiment with more
advanced, sematic-exploring methods word2vec and doc2vec. First, they are requiring higher
effort. Second, we were following the “Principles of Industrial Data Mining” arguments of
Menzies et al. (2011) emphasizing the importance of users versus algorithms. The main
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argument was that the “return-on-investment” of ESSMArT was evaluated very positive from
an industrial perspective (see Section 6), so we did not further invest substantially into
refinements of algorithms. We needed to explain the methods clearly and the achieved results
to make the industry admittance possible.

External Validity Selection of techniques for ESSMArT and validation of the different steps
were closely connected with the real-world data set of 4,114 tickets. At each step of ESSMArT
we compared and selected among state of the art methods. However, our study and the results
are limited to the context of Brightsquid. The challenge for testing ESSMArT in other contexts
is access to the holistic dataset of the whole process. This limits our ability to provide evidence
on the generalizability of the method. The process of managing customer requests is not
unique to BrightSquid which makes ESSMArT useful for other software companies.

Also, we used convenient sampling which imposes the risk of a selection bias and thus
causing a lack of credibility in general. However, it was considered acceptable as it just served
as an initial evaluation for exploratory purposes (Kitchenham and Pfleeger 2008).

Internal Validity To provide evidence that ESSMArT makes the escalation process faster, we
used experts from outside Brightsquid. We mitigated this risk by careful screening of the
participants and their background.

Conclusion Validity We analyzed the tickets of Brightsquid within a limited time frame
available. The methods of the company might change over the lifetime of the projects, and
the same is true for their customers. While we compared the length of the tickets for different
CRM employees, the CRMmanager, and the project manager were always the same person. A
change in the staff might slightly change the results presented in this paper caused by the
difference in their interaction with customers, text, and tickets. Also, for a few customer
requests (18 cases), ESSMArT appeared to be not helpful in making the process faster.
Considering the small number of cases and the small amount of slowdown, we believe that
these rare cases happen because of the difference between the cognitive ability of the
participants and possible distractions.

9 Conclusions and Future Work

ESSMArt addresses customer request management from a holistic perspective and supports
decision-makers by providing them with intelligent suggestions within the process. CRM is a
key factor for keeping customers satisfied. The main intention of ESSMArTwas NOT to fully
automate and completely exclude humans from the process. However, Brightsquid was highly
interested in reducing the resource bottleneck, while keeping the humans in the loop.

We looked into the whole process from the time of receiving a request or question from a
customer to the time that the problem is resolved by the CRM or a task is assigned to a
developer. This is unique as the existing research has been focused on the steps of this process
in isolation only. The method development was inspired by the industrial collaboration project
with Brightsquid. However, its underlying process is following the general steps of customer
request management and thus is applicable more broadly. We believe that automating the
management of customer requests and their escalation would increase the chance of innovation
within organizations (Nayebi and Ruhe 2014).
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We consider the results as necessary, but not sufficient for claiming external validity. More
empirical evaluation of the individual steps of the method as well as on the impact of the whole
method is required. In particular, as the data is coming from one company only, the evaluation
needs to be extended to other environments. Also, the existing prototype tool was intended to
perform an initial evaluation and needs to be further enhanced and more comprehensively tested.
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Appendix 1 - Illustrative Example for Comparison of Processes

In this appendix we provide an anonymized Brightsquid customer support example to compare
the traditional process of managing customer requests with the ESSMArT process.

Traditional Process of Managing Customer Requests at Brightsquid

Customers report issues to Brightsquid via telephone, chat or email, and issues are recorded in
Zendesk. In this example, illustrated in Figure 13 below, the customer (Bob) contacts the CRM
team, concerned about the management of secure messages in a team environment. The CRM
agent (Alice) elaborates on the problem and provides a summary for the customer’s approval.
Once Bob approves the description, Alice decides whether to escalate the ticket or resolve it on
her own. If unable to determine a solution, Alice escalates the issue and informs Bob. The
CRM manager (Carol), who is responsible for resolving or further escalating issues to the
development project manager, reads through the ticket, expands upon the description as
necessary, and escalates the issue to the project manager. The project manager (Erin) defines
the ticket’s priority and assigns it to the most appropriate developer for resolution.

Customer CRM agent Chief of CRM Project  manager

Summarize the request 

Escalate

Conversation

Bob (customer): John had emailed me and wanted a 
copy of a massage note faxed to him.  I send John back  
a note, with the massage note attached. He sends me 
back a thank you. We now have three emails in our 
string. Once I have deleted my note on Mr. Smith, 
everyone else on the Yellow Team still has that email. 
Unless I specifically tell everyone to delete it or unless 
the rest of the Yellow Team goes into the EMR and  
looks into Johns chart to see if its done, no one has any 
way of knowing the task has been dealt with. Is there a 
way to delete that task from everyones inbox?

Alice (CRM agent): Does this summary captures your 

request? As an office administrator who receives mes- 

sages from patients, there is no indication in Secure-Mail
to let me know if another administrator has handled a 
patient request.So, when a patient gets multiple replies. 
It would be better if it was more evident that a patients
message has been dealt with.

Bob: Yes Alice, this summary is good.

Ticket

Summary: As a staff member I need to 
know if my co-worker has responded a re- 
ceived patient message.

Description: Currently incoming messages 
from patients are distributed to all mem- 
bers of  an  organization,  however  users 
do not have visibility into  which  mes- 
sage already been responded to. This is a 
summary of a customer comment: As an

office administrator who receives messages 
from patients, there is no indication in
Secure-Mail to let me know if another ad- 
ministrator has handled a patient request. 
This can lead to issues where a patient
gets multiple replies.

Subject: Notification of Message Handled

Tags: minor, patient, sharedinbox

Ticket type: Incident Severity: Minor

Nurse

Define priority and 
assignee

Ticket

Summary: As a staff member I need to 
know if my co-worker has responded a re- 
ceived patient message.

Description: Currently incoming messages 

from patients are distributed to all 

members of an organization. However 

users do not have visibility into which 

message already been responded to. This

is a summary of a customer comment:  
As an office administrator who receives 
messages from patients, there is no in-

dication in Secure-Mail to let me know 
if another administrator has handled a 
patient  request.  This can lead to issues

where a patient gets multiple replies.

Issue Type: Improvement 

Priority:  Major 

Assignee: Carol

Issue Type: – 

Priority: – 

Assignee: –

Fig. 13 Process in BS showing the conversational structure of a customer request at Bright- Squid. The
underlined sentences have been chosen by our annotators to train machine learning based summarization
techniques
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Managing Customer Requests with ESSMArT

When Bob’s request is received, Alice elaborates the description further with the customer, as
above. ESSMArT consequently summarizes the conversation as below:

Zendesk ticket (summary of the customer request)
John emailed me and wanted a copy of the a message note faxed to him. I sent John back a note, with the

message note attached. He sends me back a thank you. Once I have deleted my note on Mr. Smith, everyone
else on the Yellow Team still has that email. Unless I specifically tell everyone to delete it or unless the rest of
the Yellow Team goes into the EMR and looks into John’s chart if it’s done, no one has any way of knowing
the task has been dealt with. Is there a way to delete that task from everyone’s inbox?

ESSMArT then escalates the ticket to Carol, who receives a notification comprising the
ESSMArT summary and escalation recommendation. If Carol agrees, ESSMArT creates a Jira
development ticket by assigning a title using abstractive summarization (Check Figure 4 for a
detailed example), assigning ticket priority, assigning a specific developer, and notifying Erin.

Jira ticket (development tickets)
Title: Delete everyone task in the EMR inbox
Content: In the EMR system; a doctor had emailed a doctor and want a copy of a message note faxed to him.

Staff member send back a note, with the message attached. The doctor sends back a thank you. Once doctor
delete his note on patient, everyone else on the team still has that email. Unless the doctor specifically tell
everyone to delete it or unless the rest of the team goes into the EMR and looks into the doctor’s chart to see if
it’s done, no one has any way of knowing the task has been dealt with. is there a way to delete that task from
everyone’s inbox?

Priority: Major
Assignee: Jane Doe

Once Erin agrees, the ESSMArT ticket is added to the Jira backlog. Screenshots of this
example in ESSMArT were previously presented in Figure 9.

Appendix 2 - Confusion Matrices

In Tables 5, 7, and 8, we presented precision, recall, and F1-score of three state-of-the art
classifiers (Naive Bayes, SVM, and Random Forest) to predict ticket escalation, prioritize the
escalated tickets, respectively assign them to a developer. These are the results of ten times of
running cross validation and we provided the averages. In addition to that, we provide the
aggregated confusion matrix for the classifiers with the best performance and for all the three
types of prediction. These confusion matrices are presented below.

Confusion matrix for ticket escalation

Predicted

Yes No

Actual Yes
No

218
103

24
297
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The False-Positives demonstrate that the classifier mistakenly considered a ticket is esca-
lated while in fact it has not been escalated. The False-Negatives indicate the tickets that
should have been escalated but were not detected by the classifier. The False-positives may
add additional effort to the development team while the False- Negatives may result in
customer’s dissatisfaction by not properly addressing their problem.

Confusion matrix for ticket assignment
*Aggregated across eight different classes

Predicted

Yes No

Actual Yes
No

218
26

40
41

The False-Positives may result in more work for developers as the ticket may be assigned to
a developer with not enough expertise. False-Negatives may result in more time and effort to
fix the ticket as the developer with less expertise would handle the ticket.

Confusion matrix for ticket prioritization
*Aggregated across five different classes

Predicted

Yes No

Actual Yes
No

133
44

49
101

The False-Positives and Negatives would delay fixing some of the important customers’
concerns prioritize lower or stuck behind lower priority tickets.

Appendix 3 - Survey Questions

The user study to evaluate ESSMArT was conducted in two main parts: First, using the
prototype tool of ESSMArT using the data from Brightsquid for evaluation purpose, and
second, asking questions to understand the perception of participants about the usability of
ESSMArT in practice. In this appendix, we present the five questions raised to understand the
perception of users about ESSMArT.

Figure 11 shows the results of this survey and the perception of CRM experts and project
managers. The sample of questions and the screenshots of the used prototype were presented
in Fig. 8 respectively Fig. 9.

1. How understandable did you find the results of ESSMArT?
5- Very understandable 4- understandable 3- Somewhat understandable but slightly
ambiguous 2- Somewhat understandable but mostly ambiguous 1- Not understandable
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2. How likely you would use ESSMArT in practice?
5- Definitely 4- Very likely 3- Maybe 2- not likely 1- Definitely not

3. To what extent you trust and rely on the ESSMArT results?
5- Totally trust it 4- Trust it 3- Neutral 2- Not trust it 1- Not trust it at all

4. Towhat extent are you agree that ESSMArT reduces the time for deciding on a change request?
5- Strongly agree 4- Agree 3- Neutral 2- Disagree 1- Strongly disagree

5. To what extent are you agree that ESSMArT reduces the time needed for CRM/PM tasks?
5- Strongly agree 4- Agree 3- Neutral 2- Disagree 1- Strongly disagree
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